用户名: 密码: 验证码:
The Role of Electron鈥揌ole Separation in Thermally Activated Delayed Fluorescence in Donor鈥揂cceptor Blends
详细信息    查看全文
文摘
Thermally activated delayed fluorescence (TADF) is becoming an increasingly important OLED technology that extracts light from nonemissive triplet states via reverse intersystem crossing (RISC) to the bright singlet state. Here we present the rather surprising finding that in TADF materials that contain a mixture of donor and acceptor molecules the electron鈥揾ole separation fluctuates as a function of time. By performing time-resolved photoluminescence experiments, both with and without a magnetic field, we observe that at short times the TADF dynamics are insensitive to magnetic field, but a large magnetic field effect (MFE) occurs at longer times. We explain these observations by constructing a quantum mechanical rate model in which the electron and hole cycle between a near-neighbor exciplex state that shows no MFE and a separated polaron-pair state that is not emissive but does show magnetic field dependent dynamics. Interestingly, the model suggests that only a portion of TADF in these blends comes from direct RISC from triplet to singlet exciplex. A substantial contribution comes from an indirect path, where the electron and hole separate, undergo RISC from hyperfine interactions, and then recombine to form a bright singlet exciplex. These observations have a significant impact on the design rules for TADF materials, as they imply a separate set of electronic parameters that can influence efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700