用户名: 密码: 验证码:
Contact Forces between TiO2 Nanoparticles Governed by an Interplay of Adsorbed Water Layers and Roughness
详细信息    查看全文
文摘
Interparticle forces govern the mechanical behavior of granular matter and direct the hierarchical assembling of nanoparticles into supramolecular structures. Understanding how these forces change under different ambient conditions would directly benefit industrial-scale nanoparticle processing units such as filtering and fluidization. Here we rationalize and quantify the contributions of dispersion, capillary, and solvation forces between hydrophilic TiO2 nanoparticles with sub-10 nm diameter and show that the humidity dependence of the interparticle forces is governed by a delicate interplay between the structure of adsorbed water layers and the surface roughness. All-atom molecular dynamics modeling supported by force-spectroscopy experiments reveals an unexpected decrease in the contact forces at increasing humidity for nearly spherical particles, while the forces between rough particles are insensitive to strong humidity changes. Our results also frame the limits of applicability of discrete solvation and continuum capillary theories in a regime where interparticle forces are dominated by the molecular nature of surface adsorbates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700