用户名: 密码: 验证码:
Preparation of Honeycomb SnO2 Foams and Configuration-Dependent Microwave Absorption Features
详细信息    查看全文
文摘
Ordered honeycomb-like SnO2 foams were successfully synthesized by means of a template method. The honeycomb SnO2 foams were analyzed by X-ray diffraction (XRD), thermogravimetric and differential scanning calorimetry (TG-DSC), laser Raman spectra, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR). It can be found that the SnO2 foam configurations were determined by the size of polystyrene templates. The electromagnetic properties of ordered SnO2 foams were also investigated by a network analyzer. The results reveal that the microwave absorption properties of SnO2 foams were dependent on their configuration. The microwave absorption capabilities of SnO2 foams were increased by increasing the size of pores in the foam configuration. Furthermore, the electromagnetic wave absorption was also correlated with the pore contents in SnO2 foams. The large and high amounts pores can bring about more interfacial polarization and corresponding relaxation. Thus, the perfect ordered honeycomb-like SnO2 foams obtained in the existence of large amounts of 322 nm polystyrene spheres showed the outstanding electromagnetic wave absorption properties. The minimal reflection loss (RL) is 鈭?7.6 dB at 17.1 GHz, and RL less than 鈭?0 dB reaches 5.6 GHz (12.4鈥?8.0 GHz) with thin thickness of 2.0 mm. The bandwidth (<鈭?0 dB, 90% microwave dissipation) can be monitored in the frequency regime of 4.0鈥?8.0 GHz with absorber thickness of 2.0鈥?.0 mm. The results indicate that these ordered honeycomb SnO2 foams show the superiorities of wide-band, high-efficiency absorption, multiple reflection and scatting, high antioxidation, lightweight, and thin thickness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700