用户名: 密码: 验证码:
Ultrathin Hexagonal 2D Co2GeO4 Nanosheets: Excellent Li-Storage Performance and ex Situ Investigation of Electrochemical Mechanism
详细信息    查看全文
文摘
Two-dimensional (2D) nanostructures are a desirable configuration for lithium ion battery (LIB) electrodes due to their large open surface and short pathway for lithium ions. Therefore, exploring new anode materials with 2D structure could be a promising direction to develop high-performance LIBs. Herein, we synthesized a new type of 2D Ge-based double metal oxides for lithium storage. Ultrathin hexagonal Co2GeO4 nanosheets with nanochannels are prepared by a simple hydrothermal method. When used as LIB anode, the sample delivers excellent cyclability and rate capability. A highly stable capacity of 1026 mAhg鈥? was recorded after 150 cycles. Detailed morphology and phase evolutions were detected by TEM and EELS measurements. It is found that Co2GeO4 decomposed into Ge NPs which are evenly dispersed in amorphous Co/Li2O matrix during the cycling process. Interestingly, the in situ formed Co matrix could serve as a conductive network for electrochemical process of Ge. Moreover, aggregations of Ge NPs could be restricted by the ultrathin configuration and Co/Li2O skeleton, leading to unique structure stability. Hence, the large surface areas, ultrathin thickness, and atomically metal matrix finally bring the superior electrochemical performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700