用户名: 密码: 验证码:
Enhanced Gas-Sensing Properties of the Hierarchical TiO2 Hollow Microspheres with Exposed High-Energy {001} Crystal Facets
详细信息    查看全文
文摘
Anatase hierarchical TiO2 with innovative designs (hollow microspheres with exposed high-energy {001} crystal facets, hollow microspheres without {001} crystal facets, and solid microspheres without {001} crystal facets) were synthesized via a one-pot hydrothermal method and characterized. Based on these materials, gas sensors were fabricated and used for gas-sensing tests. It was found that the sensor based on hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets exhibited enhanced acetone sensing properties compared to the sensors based on the other two materials due to the exposing of high-energy {001} crystal facets and special hierarchical hollow structure. First-principle calculations were performed to illustrate the sensing mechanism, which suggested that the adsorption process of acetone molecule on TiO2 surface was spontaneous, and the adsorption on high-energy {001} crystal facets would be more stable than that on the normally exposed {101} crystal facets. Further characterization indicated that the {001} surface was highly reactive for the adsorption of active oxygen species, which was also responsible for the enhanced sensing performance. The present studies revealed the crystal-facets-dependent gas-sensing properties of TiO2 and provided a new insight into improving the gas sensing performance by designing hierarchical hollow structure with special-crystal-facets exposure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700