用户名: 密码: 验证码:
Hierarchical Polymer鈥揅arbon Nanotube Hybrid Mesostructures by Crystallization-Driven Self-Assembly
详细信息    查看全文
文摘
Multistep crystallization-driven self-assembly has great potential to enable the construction of sophisticated hybrid mesostructures. During the assembly procedure, each step modifies the properties of the overall structure. Here, we demonstrate the flexibility and efficiency of this approach by preparing polymer鈥揷arbon nanotube (CNT) hybrid mesostructures. We started by growing polyferrocenyldimethylsilane (PFS) homopolymer crystals onto multiwalled CNTs. This first step facilitated the redispersion of the coated CNTs in both polar (2-propanol) and nonpolar (decane) solvents. In the second step of hybrid construction, a unimer solution of a PFS block copolymer was added into the PFS-CNT solution. The PFS coating on the CNT initiated the growth of elongated micelles, resulting in structures that resembled hairy caterpillars. PFS-b-P2VP (P2VP = poly-2-vinylpyridine) micelles were grown from the surface of PFS-CNT hybrids in 2-propanol, and PFS-b-PI (PI = polyisoprene) micelles were grown from these hybrids in decane. These micelles, by transmission electron microscopy were seen to have an unusual wavy kinked structure, very different from the uniform smooth structures normally formed by both block copolymers. For hybrids with PFS-b-PI micelles, cross-linking of the micelle coronas locked the whole structure in place and allowed us to use the partial oxidation of PFS components to grow metal nanoparticles in the core of these micelles. We finally investigated the influence of the corona-forming block used to grow the micelles on the wettability of films made from these mesostructures. Films formed with CNT hybrids grafted with PFS-b-PI micelles were superhydrophobic (contact angle, 152掳). In contrast, the surface of the films was much more hydrophilic (contact angle, 54掳) when they were prepared from CNT hybrids grafted with PFS-b-P2VP micelles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700