用户名: 密码: 验证码:
Carbon Nitride Encapsulated Nanodiamond Hybrid with Improved Catalytic Performance for Clean and Energy-Saving Styrene Production via Direct Dehydrogenation of Ethylbenzene
详细信息    查看全文
文摘
In this work, the unconsolidated carbon-nitride-layer close-wrapped nanodiamond (H-ND) hybrid has been successfully synthesized by a facile two-step approach including the mechanical milling of ND powder and hexamethylenetetramine and the followed pyrolysis of hexamethylenetetramine. The unique microstructure and surface chemistry characteristics of the nanohybrid have been identified by employing diverse characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption desorption (BET), X-ray diffraction (XRD), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS) analyses. Benefiting from the intensified synergistic effect between carbon nitride and nanodiamond, the as-synthesized H-ND hybrid carbocatalyst shows remarkably higher catalytic activity for oxidant- and steam-free direct dehydrogenation (DDH) of ethylbenzene than the nanodiamond (ND) and the previously developed mesoporous carbon nitride, which endows it to be a promising candidate for clean and energy-saving synthesis of styrene through DDH of ethylbenzene. Furthermore, this work also opens a new avenue for fabrication of diverse unconsolidated carbon nitride layers close wrapped nanocarbon hybrids with potential applications for diverse transformations owing to the intensified synergistic effect between carbon nitrides and the nanocarbons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700