用户名: 密码: 验证码:
Adsorption of 4-n-Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A Combined Experimental and Theoretical Studies
详细信息    查看全文
文摘
Adsorption of 4-n-nonylphenol (4-n-NP) and bisphenol A (BPA) on magnetic reduced graphene oxides (rGOs) as a function of contact time, pH, ionic strength and humic acid were investigated by batch techniques. Adsorption of 4-n-NP and BPA were independent of pH at 3.0- 8.0, whereas the slightly decreased adsorption was observed at pH 8.0鈥?1.0. Adsorption kinetics and isotherms of 4-n-NP and BPA on magnetic rGOs can be satisfactorily fitted by pseudo-second-order kinetic and Freundlich model, respectively. The maximum adsorption capacities of magnetic rGOs at pH 6.5 and 293 K were 63.96 and 48.74 mg/g for 4-n-NP and BPA, respectively, which were significantly higher than that of activated carbon. Based on theoretical calculations, the higher adsorption energy of rGOs + 4-n-NP was mainly due to 蟺鈥撓€ stacking and flexible long alkyl chain of 4-n-NP, whereas adsorption of BPA on rGOs was energetically favored by a lying-down configuration due to 蟺鈥撓€ stacking and dispersion forces, which was further demonstrated by FTIR analysis. These findings indicate that magnetic rGOs is a promising adsorbent for the efficient elimination of 4-n-NP/BPA from aqueous solutions due to its excellent adsorption performance and simple magnetic separation, which are of great significance for the remediation of endocrine-disrupting chemicals in environmental cleanup.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700