用户名: 密码: 验证码:
In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery
详细信息    查看全文
文摘
A one-pot synthetic methodology for fabricating stimuli-responsive hemicellulose-based hydrogels was developed that consists of the in situ formation of magnetic iron oxide (Fe3O4) nanoparticles during the covalent cross-linking of O-acetyl-galactoglucomannan (AcGGM). The Fe3O4 nanoparticle content controlled the thermal stability, macrostructure, swelling behavior, and magnetization of the hybrid hydrogels. In addition, the magnetic field-responsive hemicellulose hydrogels (MFRHHs) exhibited excellent adsorption and controlled release profiles with bovine serum albumin (BSA) as the model drug. Therefore, the MFRHHs have great potential to be utilized in the biomedical field for tissue engineering applications, controlled drug delivery, and magnetically assisted bioseparation. Magnetic field-responsive hemicellulose hydrogels, prepared using a straightforward one-step process, expand the applications of biomass-derived polysaccharides by combining the renewability of hemicellulose and the magnetism of Fe3O4 nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700