用户名: 密码: 验证码:
Ultrasmall Chitosan鈥揋enipin Nanocarriers Fabricated from Reverse Microemulsion Process for Tumor Photothermal Therapy in Mice
详细信息    查看全文
文摘
Nanocarriers play an important role in improving the photo- and thermal-stability of photosensitizers to gain better pharmacokinetics behavior in tumor photothermal therapy. Herein, PEGylated chitosan (CG-PEG; PEG: polyethylene glycol) nanoparticles with ultrasmall size (鈭? nm) were prepared through a water-in-oil reverse microemulsion method using genipin as a cross-linker. Particle size and zeta-potential can be tuned by varying the molar ratio between chitosan amino groups and genipin. CG-PEG-ICG (ICG: indocyanine green) nanoparticles were fabricated by adding ICG to CG-PEG aqueous solution through a self-assembly method via electrostatic interaction. The resultant CG-PEG-ICG nanoparticles exhibited improved photo- and thermal-stability, good biocompatibility, and low toxicity. When irradiated with a laser, the cells incubated with CG-PEG-ICG nanoparticles showed very low cell viability (15%), indicating the CG-PEG-ICG nanoparticles possess high in vitro photothermal toxicity. Moreover, the CG-PEG nanocarriers can significantly alter the biodistribution and prolong the retention time of ICG in the mice body after intravenous injection. In vivo photothermal study of tumors injected with CG-PEG-ICG nanoparticles containing ICG at a concentration greater than 100 渭g路mL鈥? (100 渭L) induced irreversible tissue damage. The growth of U87 tumors was dramatically inhibited by CG-PEG-ICG nanoparticles, demonstrating that the CG-PEG nanoparticles may act as potential ICG nanocarriers for effective in vivo tumor photothermal therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700