用户名: 密码: 验证码:
Investigation of the Cathode鈥揅atalyst鈥揈lectrolyte Interface in Aprotic Li鈥揙2 Batteries
详细信息    查看全文
文摘
Enabled by a unique integrated fabrication and characterization platform, X-ray photoelectron spectroscopy (XPS) studies reveal the formation of a thin solid electrolyte interphase (SEI) layer on a Li鈥揙2 cathode after the first cycle. Subsequent cycling indicates that this SEI layer is very stable in terms of both chemistry and morphology, even after extensive cycling, preserving reversibility at the cathode/electrolyte interface. Remarkably, even after cell failure, replacement of the lithium anode resulted in recovery of the cycling behavior with the same cathode. These results demonstrate that chemical stabilization of the cathode/electrolyte interface promotes long-term operation of DMSO-based Li鈥揙2 Ru-catalyzed batteries. Characterization of the Li anode surface reveals electrolyte decomposition, and a partial mechanism is proposed for the observed chemical composition of the cathode SEI. These studies are enabled by conformal deposition of a heterogeneous OER catalyst on a freestanding, binder-free, mesoporous, carbon-based Li鈥揙2 cathode with high capacity and long-term cycling stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700