用户名: 密码: 验证码:
A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres
详细信息    查看全文
文摘
The synthesis of well-defined and complex hollow structures via a simple method is still a major challenge. In this work, a facile and controllable 鈥渕ulti-interface transformation鈥?approach for preparation of monodisperse multi-shelled periodic mesoporous organosilica (PMO) hollow spheres has been established by a one-step hydrothermal treatment of successively grown organosilica particles. The multi-shelled PMO hollow spheres have inorganic鈥搊rganic hybrid frameworks, controllable number (1鈥?) of shells, high surface area (鈭?05 m2/g), accessible ordered mesochannels (鈭?.2 nm), large pore volume (1.0 cm3/g), and uniform and tunable diameter (300鈥?50 nm), chamber size (4鈥?4 nm), and shell thickness (10鈥?0 nm). In addition, various organic groups (alkyl, aromatic, and heteroelement fragments) are successfully incorporated into the multi-shelled PMO hollow spheres by successively adding different bridged organosilica precursors. Notably, the distribution of different kinds of organic groups in the multi-shelled PMO hollow spheres can be precisely controlled, showing great potential for future applications. We propose that the formation of the multi-shelled PMO hollow structures is ascribed to the creation of multiple highly cross-linked organosilica interfaces, providing a new and interesting fundamental principle for PMO materials. Due to their unique structure and frameworks, triple-shelled ethane-bridged PMO hollow spheres were successfully loaded with an anti-cancer drug doxorubicin and perfluoropentane gas, which present excellent effects in the killing of cancer cells and ultrasound imaging. It is expected that the multi-interface transformation strategy provides a simple, controllable, versatile, and template-free method for preparation of various multifunctional PMOs for different applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700