用户名: 密码: 验证码:
Advanced Aromatic Polymers with Excellent Antiatomic Oxygen Performance Derived from Molecular Precursor Strategy and Copolymerization of Polyhedral Oligomeric Silsesquioxane
详细信息    查看全文
  • 作者:Pei Wang ; Yusheng Tang ; Zhen Yu ; Junwei Gu ; Jie Kong
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2015
  • 出版时间:September 16, 2015
  • 年:2015
  • 卷:7
  • 期:36
  • 页码:20144-20155
  • 全文大小:729K
  • ISSN:1944-8252
文摘
In this contribution, the advanced aromatic polymers with excellent antiatomic oxygen (AO) performance were designed and synthesized using molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane (POSS). A soluble poly(p-phenylene benzobisoxazole) (PBO) precursor, that is, TBS鈥揚BO (tert-butyldimethylsilyl was denoted as TBS), was designed to overcome the poor solubility of PBO in organic solvents. Then the new copolymer of TBS鈥揚BO鈥揚OSS was synthesized by the copolymerization of TBS鈥揚BO and POSS, which possessed good solubility and film-forming ability in common organic solvents, such as N-methylpyrrolidone, N,N-dimethylacetamide, and dimethyl sulfoxide. More importantly, the TBS鈥揚BO鈥揚OSS films exhibited outstanding antiatomic oxygen properties because of the incorporation of POSS monomers with cagelike structure into the main chain of copolymer, which drastically reduced the AO-induced erosion owing to the formation of the passivating silica layer on the surface of polymers. When the TBS鈥揚BO鈥揚OSS films were exposed to AO effective fluences of 1.5495 脳 1020 atom cm鈥? (5 h) and 4.6486 脳 1020 atom cm鈥? (15 h), the relative mass loss was merely 0.19% and 0.41%, respectively. This work provides a new perspective and efficient strategy for the molecular design of aromatic heterocyclic polymers possessing excellent combination properties including processing convenience and antioxidative and mechanical properties, which can be employed as potential candidates to endure the aggressive environment encountered in low earth orbits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700