用户名: 密码: 验证码:
MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection
详细信息    查看全文
文摘
Induced pluripotent stem cells (iPSCs), resulting from the forced expression of cocktails out of transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (OSKM), has shown tremendous potential in regenerative medicine. Although rapid progress has been made recently in the generation of iPSCs, the safety and efficiency remain key issues for further application. In this work, microRNA 302-367 was employed to substitute the oncogenic Klf4 and c-Myc in the OSKM combination as a safer strategy for successful iPSCs generation. The negatively charged plasmid mixture (encoding Oct4, Sox2, miR302-367) and the positively charged cationized Pleurotus eryngii polysaccharide (CPEPS) self-assembled into nanosized particles, named as CPEPS-OS-miR nanoparticles, which were applied to human umbilical cord mesenchymal stem cells for iPSCs generation after characterization of the physicochemical properties. The CPEPS-OS-miR nanoparticles possessed spherical shape, ultrasmall particle size, and positive surface charge. Importantly, the combination of plasmids Oct4, Sox2, and miR302-367 could not only minimize genetic modification but also show a more than 50 times higher reprogramming efficiency (0.044%) than any other single or possible double combinations of these factors (Oct4, Sox2, miR302-367). Altogether, the current study offers a simple, safe, and effective self-assembly approach for generating clinically applicable iPSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700