用户名: 密码: 验证码:
Incorporation of Fluorine onto Different Positions of Phenyl Substituted Benzo[1,2-b:4,5-b鈥瞉dithiophene Unit: Influence on Photovoltaic Properties
详细信息    查看全文
文摘
We have designed and synthesized two low bandgap conjugated copolymers containing alternating meta-fluoro-p-alkoxyphenyl- (m-FPO-) or p-fluoro-m-alkoxyphenyl- (p-FPO-) substituted benzodithiophenes-co-benzooxadiazole (BO), named PBO-m-FPO and PBO-p-FPO. The properties, including UV鈥搗is absorption, charge mobility and photovoltaic performance of the two polymers have been intensively investigated. The results indicated that the introduction of fluorine atom at m, p positions of phenyl substituted benzodithiophene unit hardly affected their absorption spectra and highest occupied molecular orbital (HOMO) level. However, the two polymers showed different photovoltaic properties. Power conversion efficiencies (PCEs) based on the device structure of ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al demonstrated a large distinction (5.9% for PBO-m-FPO vs 2.8% for PBO-p-FPO) at optimal weight ratio. When replacing the Ca layer with zirconium acetylacetonate (ZrAcac), using 3% 1,8-diiodooctane (DIO) as the active layer additive, the PCEs of PBO-m-FPO and PBO-p-FPO increased by 36% (8.0% vs 5.9%) and 85% (5.1% vs 2.8%), respectively. The active layer鈥檚 mobilities, morphology and molecular packing resulted in a significant difference in short-circuit current density (Jsc) and fill factor (FF).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700