用户名: 密码: 验证码:
Cellulose-Templated Graphene Monoliths with Anisotropic Mechanical, Thermal, and Electrical Properties
详细信息    查看全文
文摘
Assembling particular building blocks into composites with diverse targeted structures has attracted considerable interest for understanding its new properties and expanding the potential applications. Anisotropic organization is considered as a frequently used targeted architecture and possesses many peculiar properties because of its unusual shapes. Here, we show that anisotropic graphene monoliths (AGMs), three-dimensional architectures of well-aligned graphene sheets obtained by a dip-coating method using cellulose acetate fibers as templates show thermal-insulating, fire-retardant, and anisotropic properties. They exhibit a feature of higher mechanical strength and thermal/electrical conductivities in the axial direction than in the radial direction. Elastic polymer resins are then introduced into the pores of the AGMs to form conductive and flexible composites. The composites, as AGMs, retain the unique anisotropic properties, revealing opposite resistance change under compressions in different directions. The outstanding anisotropic properties of AGMs make them possible to be applied in the fields of thermal insulation, integrated circuits, and electromechanical devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700