用户名: 密码: 验证码:
Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions
详细信息    查看全文
文摘
Shear-thickening fluids (STFs) can be subjected to a significant temperature variation in many applications. Polymeric or oligomeric fluids are commonly used as suspending media for STFs. Because the viscosities of polymeric fluids are strongly temperature-dependent, large temperature changes can profoundly affect the shear-thickening responses. Here, the effect of temperature on the shear-thickening behavior of four low-molecular-weight polymeric glycols/fumed silica suspensions is reported. The dispersed-phase volume fraction, its surface chemistry, and the chemical compositions of the suspending media were varied. These factors influence the viscosity and the interactions between the suspended particles and the suspending media. Fumed silica particles with two different silanol-group surface densities were suspended in the polymeric glycols, where these silanol surface groups formed hydrogen bonds with the suspending media鈥檚 glycols and internal oxygen atoms. Steady-shear experiments were performed over a temperature range spanning approximately 100 掳C. The critical shear rate for the onset of shear thickening decreased with decreasing temperature. The critical shear rates were inversely proportional to the viscosity of the pure suspending media over these same temperature ranges. The response of STFs to varying both the temperature and shear rate investigated here will help to design application-specific STFs. Mitigation of a hypervelocity (6.81 km/s) impact on an aluminum facesheet sandwich composite filled with one of these STFs was demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700