用户名: 密码: 验证码:
Nanoconfinement and Chemical Structure Effects on Permeation Selectivity of Self-Assembling Graft Copolymers
详细信息    查看全文
文摘
Permeation of small molecule solutes through thin films is typically described by the solution-diffusion model, but this model cannot predict the effects of nanostructure due to self-assembly or additives. Other models focusing on diffusion through isolated nanopores indicate that confining permeation to channels slightly larger than the size of the solute can lead to an increased influence of solute鈥損ore wall interactions on permeation rate. In this study, we analyze how differences in polymer nanostructure affect the relative contributions of solute size and polymer鈥搒olute interactions on transport rate. We compared the diffusion rates of several small molecules through two polymer thin films: A cross-linked, homogeneous film of poly(ethylene glycol phenyl ether acrylate) (PEGPEA) and a graft copolymer with a poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE)) backbone and PEGPEA side chains that self-assemble into continuous 鈭?鈥? nm PEGPEA domains through which transport occurs. We correlated these rates with the size of each solute and its chemical affinity to PEGPEA, as measured by the difference between their solubility parameters. Diffusion rate through the homogeneous polymer film was controlled by solute size, whereas diffusion rate through the copolymer was strongly controlled by the difference between the solubility parameters. Furthermore, permeation selectivity between two selected molecules was 2.5脳 higher for the nanostructured copolymer, likely enhanced by the nanoconfinement effects. These initial results indicate that polymer self-assembly is a promising tool for designing polymeric membranes that can differentiate between solutes of similar size but differing chemical structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700