用户名: 密码: 验证码:
Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria
详细信息    查看全文
文摘
La(OH)3 nanorods immobilized in polyacrylonitrile (PAN) nanofibers (PLNFs) were fabricated for the first time by electrospinning and a subsequent in situ surfactant-free precipitation method and then applied as a highly efficient phosphate scavenger to realize nutrient-starvation antibacteria for drinking water security. The immobilization by PAN nanofibers effectively facilitated the in situ formation of the aeolotropic and well-dispersed La(OH)3 nanostructures and, thus, rendered higher phosphate removal efficiency due to more exposed active sites for binding phosphate. The maximum phosphate capture capacity of La(OH)3 nanorods in PAN nanofibers was around 8 times that of the La(OH)3 nanocrystal fabricated by precipitation without PAN protection. Moreover, remarkably fast adsorption kinetics and high removal rate were observed toward low concentration phosphate due to the high activity of our materials, which can result in a stringent phosphate-deficient condition to kill microorganisms in water effectively. The present material is also capable of preventing sanitized water from recontamination by bacteria and keeping water biologically stable for drinking. Impressively, stabilized by PAN nanofibers, the La(OH)3 nanorods can be easily separated out after reactions and avoid leaking into water. The present development has great potential as a promising antimicrobial solution for practical drinking water security and treatment with a negligible environmental footprint.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700