用户名: 密码: 验证码:
Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms
详细信息    查看全文
文摘
Clarification of the energy-transfer (ET) mechanism is of vital importance for constructing efficient upconversion nanoplatforms for biological/biomedical applications. Yet, most strategies of optimizing these nanoplatforms were casually based on a dynamic ET assumption. In this work, we have modeled quantitatively the shell-thickness-dependent interplay between dynamic and static ET in nanosystems and validated the model in a typical biofunctional upconversion nanoplatform composed of NaYF4:Er, Yb/NaYF4 upconversion nanoparticles (UCNPs), and energy-acceptor photosensitizing molecule Rose Bengal (RB). It was determined that with a proper thickness shell, the energy transferred via dynamic ET as well as static ET in this case could be significantly improved by 鈭? and 鈭? fold, respectively, compared with the total energy transferred from bare core UCNPs. Our results shall form the bedrock in designing highly efficient ET-based biofunctional nanoplatforms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700