用户名: 密码: 验证码:
Waterborne Polyurethanes with Tunable Fluorescence and Room-Temperature Phosphorescence
详细信息    查看全文
文摘
Single-component materials with both fluorescence and room-temperature phosphorescence (RTP) are useful for ratiometric sensing and imaging applications. On the basis of a general design principle, an amino-substituted benzophenone is covalently incorporated into waterborne polyurethanes (WPU) and results in fluorescence and RTP single-component dual-emissive materials (SDMs). At different aminobenzophenone concentrations, the statistical, thermal, and optical properties of these SDMs are characterized. Despite their similar thermal behaviors, the luminescence properties as a function of the chromophore concentration are quite different: increasing concentrations led to progressively narrowed singlet鈥搕riplet energy gaps. The tunability of fluorescence and RTP via chromophore concentration is explained by a previously proposed model, polymerization-enhanced intersystem crossing (PEX). The proposal of PEX is based on Kasha鈥檚 molecular exciton theory with a specific application in polymeric systems, where the polymerization of luminophores results in excitonic coupling and enhanced forward and reverse intersystem crossing. The mechanism of PEX is also examined by theoretical calculations for the WPU system. It is found that the presence of K1 aggregates indeed enhances the crossover from singlet excited states to triplet ones.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700