用户名: 密码: 验证码:
Serially Ordered Magnetization of Nanoclusters via Control of Various Transition Metal Dopants for the Multifractionation of Cells in Microfluidic Magnetophoresis Devices
详细信息    查看全文
文摘
A novel method (i.e., continuous magnetic cell separation in a microfluidic channel) is demonstrated to be capable of inducing multifractionation of mixed cell suspensions into multiple outlet fractions. Here, multicomponent cell separation is performed with three different distinguishable magnetic nanoclusters (MnFe2O4, Fe3O4, and CoFe2O4), which are tagged on A431 cells. Because of their mass magnetizations, which can be ideally altered by doping with magnetic atom compositions (Mn, Fe, and Co), the trajectories of cells with each magnetic nanocluster in a flow are shown to be distinct when dragged under the same external magnetic field; the rest of the magnetic characteristics of the nanoclusters are identically fixed. This proof of concept study, which utilizes the magnetization-controlled nanoclusters (NCs), suggests that precise and effective multifractionation is achievable with high-throughput and systematic accuracy for dynamic cell separation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700