用户名: 密码: 验证码:
Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics
详细信息    查看全文
文摘
We proposed a facile and green one-pot strategy to synthesize Mo bronzes nanoparticles to serve as an efficient hole extraction layer in polymer solar cells. Mo bronzes were obtained through reducing the fractional self-aggregated ammonium heptamolybdate with appropriate reducing agent ascorbic acid, and its optoelectronic properties were fully characterized. The synthesized Mo bronzes displayed strong n-type semiconductor characteristics with a work function of 5.2鈥?.4 eV, matched well with the energy levels of current donor polymers. The presented gap states of the Mo bronzes near the Fermi level were beneficial for facilitating charge extraction. The as-synthesized Mo bronzes were used as hole extraction layer in polymer solar cells and significantly enhanced the photovoltaic performance and stability. The power conversion efficiency was increased by more than 18% compared with the polyethylene dioxythiophene:polystyrenesulfonate-based reference cell. The excellent performance and facile preparation render the as-synthesized solution-processed Mo bronzes nanoparticles a promising candidate for hole extraction layer in low-cost and efficient polymer solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700