用户名: 密码: 验证码:
Transforming Flask Reaction into Cell-Based Synthesis: Production of Polyhydroxylated Molecules via Engineered Escherichia coli
详细信息    查看全文
文摘
Dihydroxyacetone phosphate (DHAP)-dependent aldolases have been intensively studied and widely used in the synthesis of carbohydrates and complex polyhydroxylated molecules. However, strict specificity toward donor substrate DHAP greatly hampers their synthetic utility. Here, we transformed DHAP-dependent aldolases-mediated by in vitro reactions into bioengineered Escherichia coli (E. coli). Such flask-to-cell transformation addressed several key issues plaguing in vitro enzymatic synthesis: (1) it solves the problem of DHAP availability by in vivo-hijacking DHAP from the glycolysis pathway of the bacterial system, (2) it circumvents purification of recombinant aldolases and phosphatase, and (3) it dephosphorylates the resultant aldol adducts in vivo, thus eliminating the additional step for phosphate removal and achieving in vivo phosphate recycling. The engineered E. coli strains tolerate a wide variety of aldehydes as acceptor and provide a set of biologically relevant polyhydroxylated molecules in gram scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700