用户名: 密码: 验证码:
Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser
详细信息    查看全文
文摘
The Cassie-state stability plays a vital role in the applications of metallic superhydrophobic surfaces. Although a large number of papers have reported the superhydrophobic performance of various surface micro/nanostructures, the knowledge of which kind of micro/nanostructure contributes significantly to the Cassie-state stability especially under low temperature and pressure is still very limited. In this article, we fabricated six kinds of typical micro/nanostructures with different topography features on metal surfaces by a femtosecond laser, and these surfaces were modified by fluoroalkylsilane to generate superhydrophobicity. We then systematically studied the Cassie-state stability of these surfaces by means of condensation and evaporation experiments. The results show that some superhydrophobic surfaces, even with high contact angles and low sliding angles under normal conditions, are unstable under low temperature or external pressure. The Cassie state readily transits to a metastable state or even a Wenzel state under these conditions, which deteriorates their superhydrophobicity. Among the six micro/nanostructures, the densely distributed nanoscale structure is important for a stable Cassie state, and the closely packed micrometer-scale structure can further improve the stability. The dependence of the Cassie-state stability on the fabricated micro/nanostructures and the laser-processing parameters is also discussed. This article clarifies optimized micro/nanostructures for stable and thus more practical metallic superhydrophobic surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700