用户名: 密码: 验证码:
Synergistic Effects in Nanoengineered HNb3O8/Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO2 into Renewable Fuels
详细信息    查看全文
文摘
Layered HNb3O8/graphene hybrids with numerous heterogeneous interfaces and hierarchical pores were fabricated via the reorganization of exfoliated HNb3O8 nanosheets with graphene nanosheets (GNs). Numerous interfaces and pores were created by the alternative stacking of HNb3O8 nanosheets with limited size and GNs with a buckling and folding feature. The photocatalytic conversation of CO2 into renewable fuels by optimized HNb3O8/G hybrids yields 8.0-fold improvements in CO evolution amounts than that of commercial P25 and 8.6-fold improvements than that of HNb3O8 bulk powders. The investigation on the relationships between microstructures and improved photocatalytic performance demonstrates that the improved photocatalytic performance is attributed to the exotic synergistic effects via the combination of enhanced specific BET surface area, increased strong acid sites and strong acid amounts, narrowed band gap energy, depressed electron–hole recombination rate, and heterogeneous interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700