用户名: 密码: 验证码:
Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes
详细信息    查看全文
文摘
Polymeric three-dimensional inverse-opal (IO) structures provide unique structural properties useful for various applications ranging from optics to separation technologies. Despite vast needs for IO functionalization to impart additional chemical properties, this task has been seriously challenged by the intrinsic limitation of polymeric porous materials that do not allow for the easy penetration of waterborne moieties or precursors. To overcome this restriction, we present a robust and straightforward method of employing a dipping-based surface modification with polydopamine (PDA) inside the IO structures, and demonstrate their application to catalytic membranes via synthetic incorporation of Ag nanoparticles. The PDA coating offers simultaneous advantages of achieving the improved hydrophilicity required for the facilitated infiltration of aqueous precursors and successful creation of nucleation sites for a reduction of growth of the Ag nanoparticles. The resulting Ag nanoparticle-incorporated IO structures are utilized as catalytic membranes for the reduction of 4-nitrophenol to its amino derivatives in the presence of NaBH4. Synergistically combined characteristics of high reactivity of Ag nanoparticles along with a greatly enhanced internal surface area of IO structures enable the implementation of remarkably improved catalytic performance, exhibiting a good conversion efficiency greater than 99% while minimizing loss in the membrane permeability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700