用户名: 密码: 验证码:
Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties
详细信息    查看全文
文摘
The Li(Li0.18Ni0.15Co0.15Mn0.52)O2 cathode material is modified by a Li4M5O12-like heterostructure and a BiOF surface layer. The interfacial heterostructure triggers the layered-to-Li4M5O12 transformation of the material which is different from the layered-to-LiMn2O4 transformation of the pristine Li(Li0.18Ni0.15Co0.15Mn0.52)O2. This Li4M5O12-like transformation helps the material to keep high working voltage, long cycle life and excellent rate capability. Mass spectrometry, in situ X-ray diffraction and transmission electron microscope show that the Li4M5O12-like phase prohibits oxygen release from the material bulk at elevated temperatures. In addition, the BiOF coating layer protects the material from harmful side reactions with the electrolyte. These advantages significantly improve the electrochemical performance of Li(Li0.18Ni0.15Co0.15Mn0.52)O2. The material shows a discharge capacity of 292 mAh g–1 at 0.2 C with capacity retention of 92% after 100 cycles. Moreover, a high discharge capacity of 78 mAh g–1 could be obtained at 25 C. The exothermic temperature of the fully charged electrode is elevated from 203 to 261 °C with 50% reduction of the total thermal release, highlighting excellent thermal safety of the material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700