用户名: 密码: 验证码:
Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li0.2Ni0.16Co0.1Mn0.54]O2 Cathode and Si Anode
详细信息    查看全文
文摘
The cathode materials of Li-ion batteries for electric vehicles require not only a large gravimetric capacity but also a high volumetric capacity. A new Li-rich layered oxide cathode with superior capacity, Li[Li0.20Ni0.16Co0.10Mn0.54]O2 (denoted as LNCM), is synthesized from precursor, a coprecipitated spherical metal hydroxide. The preparation technology of precursor such as stirring speed, concentration of metal solution, and reaction time are regulated elaborately. The final product LNCM shows a well-ordered, hexagonal-layer structure, as confirmed by Rietveld refinement of X-ray diffraction pattern. The particle size of the final product has an average diameter of about 10 μm, and the corresponding tap density is about 2.25 g cm–3. Electrochemical measurements indicate that as-prepared LNCM has great initial columbic efficiency, reversible capacity, and cycling stability, with specific discharge capacities of 278 and 201 mAh g–1 at 0.03 and 0.5 C rates, respectively. Cycling at 0.1 C, LNCM delivers a discharge capacity of 226 mAh g–1 with 95% retention capacity after 50 cycles. Si/LNCM cell is fabricated using Si submicroparticle as anode against LNCM. The cell can exhibit a specific energy of 590 Wh kg–1 based on the total weight of cathode and anode materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700