用户名: 密码: 验证码:
Static and Dynamic Performance of Complementary Inverters Based on Nanosheet α-MoTe2 p-Channel and MoS2 n-Channel Transistors
详细信息    查看全文
文摘
Molybdenum ditelluride (α-MoTe2) is an emerging transition-metal dichalcogenide (TMD) semiconductor that has been attracting attention due to its favorable optical and electronic properties. Field-effect transistors (FETs) based on few-layer α-MoTe2 nanosheets have previously shown ambipolar behavior with strong p-type and weak n-type conduction. We have employed a direct imprinting technique following mechanical nanosheet exfoliation to fabricate high-performance complementary inverters using α-MoTe2 as the semiconductor for the p-channel FETs and MoS2 as the semiconductor for the n-channel FETs. To avoid ambipolar behavior and produce α-MoTe2 FETs with clean p-channel characteristics, we have employed the high-workfunction metal platinum for the source and drain contacts. As a result, our α-MoTe2 nanosheet p-channel FETs show hole mobilities up to 20 cm2/(V s), on/off ratios up to 105, and a subthreshold slope of 255 mV/decade. For our complementary inverters composed of few-layer α-MoTe2 p-channel FETs and MoS2 n-channel FETs we have obtained voltage gains as high as 33, noise margins as high as 0.38 VDD, a switching delay of 25 μs, and a static power consumption of a few nanowatts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700