用户名: 密码: 验证码:
Electrostatic-Driven Lamination and Untwisting of β-Sheet Assemblies
详细信息    查看全文
文摘
Peptides or peptide conjugates capable of assembling into one-dimensional (1D) nanostructures have been extensively investigated over the past two decades due to their implications in human diseases and also their interesting applications as biomaterials. While many of these filamentous assemblies contain a β-sheet-forming sequence as the key design element, their eventual morphology could assume a variety of shapes, such as fibrils, ribbons, belts, or cylinders. Deciphering the key factors that govern the stacking fashion of individual β-sheets will help understand the polymorphism of peptide assemblies and greatly benefit the development of functional materials from customized molecular design. Herein, we report the decisive role of electrostatic interactions in the lamination and untwisting of 1D assemblies of short peptides. We designed and synthesized three short peptides containing only six amino acids (EFFFFE, KFFFFK, and EFFFFK) to elucidate the effective control of β-sheet stacking. Our results clearly suggest that electrostatic repulsions between terminal charges reduce the pitch of the twisting β-sheet tapes, thus leading to highly twisted, intertwined fibrils or twisted ribbons, whereas reducing this repulsion, either through molecular design of peptide with opposite terminal charges or through coassembly of two peptides carrying opposite charges, results in formation of infinite assemblies such as belt-like morphologies. We believe these observations provide important insight into the generic design of β-sheet assemblies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700