用户名: 密码: 验证码:
Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals
详细信息    查看全文
文摘
Large PbS protruded cubes, edge- and corner-truncated cubes and octahedra, and perfect octahedra with sizes over 200 nm have been synthesized in aqueous solution. By using two surface oxide-free tungsten probes to contact a clean particle, these PbS nanocrystals displayed facet-dependent electrical conductivity behaviors. Both {110} and {100} faces are highly conductive at applied voltages beyond 4 V, but the {111} faces can remain nonconductive even at 5 V. An asymmetric IV curve was recorded when electrical contacts were made simultaneously on the {110} and {111} facets of a truncated cube. A modified band diagram of PbS is constructed to account for the observed facet-dependent effect. Density of states plots for varying numbers of PbS surface planes show larger areas of conduction band electron occupancy for the (110) and (100) planes than that for the (111) planes at a layer thickness of 3.0–3.4 nm. The work represents that, for the first time, the facet-dependent electrical properties of an n-type semiconductor nanocrystal are directly probed. Facet-dependent electrical conductivity should be a general semiconductor property and can be exploited to fabricate single-nanocrystal operating electronic components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700