用户名: 密码: 验证码:
First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries
详细信息    查看全文
文摘
The Li-binding thermodynamics and redox potentials of seven different quinone derivatives are investigated to determine their suitability as positive electrode materials for lithium-ion batteries. First, using density functional theory (DFT) calculations on the interactions between the quinone derivatives and Li atoms, we find that the Li atoms primarily bind with the carbonyl groups in the test molecules. Next, we observed that the redox properties of the quinone derivatives can be tuned in the desired direction by systematically modifying their chemical structures using electron-withdrawing functional groups. Further, DFT-based investigations of the redox potentials of the Li-bound quinone derivatives provide insights regarding the changes induced in their redox properties during the discharging process. The redox potential decreases as the number of bound Li atoms is increased. However, we found that the functionalization of the quinone derivatives with carboxylic acids can improve their redox potential as well as their charge capacity. Through this study, we also determined that the cathodic activity of quinone derivatives during the discharging process relies strongly on the solvation effect as well as on the number of carbonyl groups available for further Li binding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700