用户名: 密码: 验证码:
Numerical Modeling of Fracture-Resistant Sn Micropillars as Anode for Lithium Ion Batteries
详细信息    查看全文
文摘
Sn possesses three times higher capacity in comparison to graphite anode (372 mAhg–1) that makes it a promising candidate for enhanced performance Li ion batteries. Contrary to Si, Sn is compliant and ductile in nature and thus is expected to readily relax the Li diffusion-induced stresses. The low melting point of Sn additionally allows for stress relaxations from time-dependent or creep deformations even at room temperature. In this study, numerical modeling is used to reveal the significance of plasticity and creep-based stress relaxations in the Sn working electrode. The maximum elastic tensile hoop stresses for 1 μm micropillar size with 1C charging rate conditions reduces down from ∼1 GPa to ∼200 MPa when Sn is allowed to plastically deform at a yield strength of ∼150 MPa. After experimentally determining the creep response of Sn micropillars, creep deformations are incorporated in numerical modeling to show that the maximum tensile hoop stress is further reduced to ∼0.45 MPa under the same conditions. Lastly, the Li-induced stresses are analyzed for different micropillar sizes to evaluate the critical size to prevent fracture, which is determined to be ∼5.3 μm for C/10 charging rate, which is significantly larger than that in Si.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700