用户名: 密码: 验证码:
Low-Cost Al2O3 Coating Layer As a Preformed SEI on Natural Graphite Powder To Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries
详细信息    查看全文
文摘
Coulombic efficiency especially in the first cycle, cycling stability, and high-rate performance are crucial factors for commercial Li-ion batteries (LIBs). To improve them, in this work, Al2O3-coated natural graphite powder was obtained through a low-cost and facile sol–gel method. Based on a comparison of various coated amounts, 0.5 mol % Al(NO3)3 (vs mole of graphite) could bring about a smooth Al2O3 coating layer with proper thickness, which could act as a preformed solid electrolyte interface (SEI) to reduce the regeneration of SEI and lithium-ions consumption during subsequent cycling. Furthermore, we examined the advantages of Al2O3 coating by relating energy levels in LIBs using density functional theory calculations. Owing to its proper bandgap and lithium-ion conduction ability, the coating layer performs the same function as a SEI does, preventing an electron from getting to the outer electrode surface and allowing lithium-ion transport. Therefore, as a preformed SEI, the Al2O3 coating layer reduces extra cathode consumption observed in commercial LIBs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700