用户名: 密码: 验证码:
Inhibition of Xylene Isomerization in the Production of Renewable Aromatic Chemicals from Biomass-Derived Furans
详细信息    查看全文
文摘
Inhibition of p-xylene isomerization in the presence of H-Y (Si/Al 2.6) and H-BEA (Si/Al 12.5) zeolites was studied under conditions relevant to p-xylene production from 2,5-dimethylfuran (DMF) and ethylene. Through examination of the reaction components, it was shown that both DMF and 2,5-hexanedione inhibit transalkylation and methyl shift reactions of p-xylene, while other reaction components, water and ethylene, do not. Retention of Brønsted acid sites after the reaction was shown through the use of 27Al NMR for both H-Y and H-BEA zeolites, but with a reduction in the ratio of tetrahedrally coordinated aluminum (strong acid sites) to octahedrally coordinated aluminum (Lewis acid sites) coinciding with the disappearance of the framework aluminum. Diffuse reflectance spectroscopy has shown preferential adsorption of DMF and 2,5-hexanedione (DMF + H2O) relative to p-xylene to the Brønsted acid sites located in the super and sodalite cages of the H-Y. Desorption characteristics for DMF and p-xylene in H-Y and H-BEA were determined by thermogravimetric analysis, consistent with adsorption energetics of individual chemical species and dimeric complexes evaluated by an ONIOM method. Evaluation of three mechanisms, allowing for production of p-xylene from DMF and ethylene while also inhibiting p-xylene isomerization, supports high surface coverage of the active site with 2,5-hexanedione, supported by electronic structure calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700