用户名: 密码: 验证码:
Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor
详细信息    查看全文
文摘
The histamine type 3 receptor (H3) is a G protein-coupled receptor implicated in several disorders of the central nervous system. Herein, we describe the radiolabeling and preclinical evaluation of a candidate radioligand for the H3 receptor, 4-(1S,2S)-2-(4-cyclobutylpiperazine-1-carbonyl)cyclopropyl]-N-methyl-benzamide (5), and its comparison with one of the frontrunner radioligands for H3 imaging, namely, GSK189254 (1). Compounds 1 and 5 were radiolabeled with tritium and carbon-11 for in vitro and in vivo imaging experiments. The in vitro binding of [3H]1 and [3H]5 was examined by (i) saturation binding to rat and nonhuman primate brain tissue homogenate and (ii) in vitro autoradiography on tissue sections from rat, guinea pig, and human brain. The in vivo binding of [11C]1 and [11C]5 was examined by PET imaging in mice and nonhuman primates. Bmax values obtained from Scatchard analysis of [3H]1 and [3H]5 binding were in good agreement. Autoradiography with [3H]5 on rat, guinea pig, and human brain slices showed specific binding in regions known to be enhanced in H3 receptors, a high degree of colocalization with [3H]1, and virtually negligible nonspecific binding in tissue. PET measurements in mice and nonhuman primates demonstrated that [11C]5 binds specifically and reversibly to H3 receptors in vivo with low nonspecific binding in brain tissue. Whereas [11C]1 showed similar binding characteristics in vivo, the binding kinetics appeared faster for [11C]5 than for [11C]1. Conclusions: [11C]5 has suitable properties for quantification of H3 receptors in nonhuman primate brain and has the potential to offer improved binding kinetics in man compared to [11C]1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700