用户名: 密码: 验证码:
Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull
详细信息    查看全文
文摘
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700