用户名: 密码: 验证码:
Indium–Tin–Oxide Nanowire Array Based CdSe/CdS/TiO2 One-Dimensional Heterojunction Photoelectrode for Enhanced Solar Hydrogen Production
详细信息    查看全文
文摘
For photoelectrochemical (PEC) hydrogen production, low charge transport efficiency of a photoelectrode is one of the key factors that largely limit PEC performance enhancement. Here, we report a tin-doped indium oxide (In2O3:Sn, ITO) nanowire array (NWs) based CdSe/CdS/TiO2 multishelled heterojunction photoelectrode. This multishelled one-dimensional (1D) heterojunction photoelectrode shows superior charge transport efficiency due to the negligible carrier recombination in ITO NWs, leading to a greatly improved photocurrent density (∼16.2 mA/cm2 at 1.0 V vs RHE). The ITO NWs with an average thickness of ∼12 μm are first grown on commercial ITO/glass substrate by a vapor–liquid–solid method. Subsequently, the TiO2 and CdSe/CdS shell layers are deposited by an atomic layer deposition (ALD) and a chemical bath deposition method, respectively. The resultant CdSe/CdS/TiO2/ITO NWs photoelectrode, compared to a planar structure with the same configuration, shows improved light absorption and much faster charge transport properties. More importantly, even though the CdSe/CdS/TiO2/ITO NWs photoelectrode has lower CdSe/CdS loading (i.e., due to its lower surface area) than the mesoporous TiO2 nanoparticle based photoelectrode, it shows 2.4 times higher saturation photocurrent density, which is attributed to the superior charge transport and better light absorption by the 1D ITO NWs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700