用户名: 密码: 验证码:
Surface-Initiated ARGET ATRP of Poly(Glycidyl Methacrylate) from Carbon Nanotubes via Bioinspired Catechol Chemistry for Efficient Adsorption of Uranium Ions
详细信息    查看全文
文摘
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) integrated with mussel-inspired polydopamine (PDA) chemistry was, for the first time, employed for controlled grafting of poly(glycidyl methacrylate) (PGMA) brushes from carbon nanotubes (CNTs). The strategy initially involved deposition of a PDA layer by spontaneous self-polymerization, which is a benign and nonsurface specific way for anchoring 2-bromoisobutyryl bromide to form initiators on the CNTs. Dense and uniform PGMA brushes were then grown via ARGET ATRP using low concentration of Cu catalyst in different solvents. With abundant highly reactive epoxy groups, the PGMA-grafted CNTs could serve as a versatile platform for further modification or functionalization. Ethylenediamine ligands were facilely introduced, imparting the functionalized CNTs with record-high adsorption ability toward uranium ions among CNTs composites. The integrated strategy combining surface-initiated ARGET ATRP technique and PDA chemistry would provide new opportunities for surface engineering of nanomaterials for advanced applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700