用户名: 密码: 验证码:
Nanoprecipitation of Fluorescent Conjugated Polymer onto the Surface of Plasmonic Nanoparticle for Fluorescence/Dark-Field Dual-Modality Single Particle Imaging
详细信息    查看全文
文摘
In this work, a hybridized nanoparticle with fluorescence/dark-field dual-modality imaging capability was prepared by nanoprecipitation of fluorescent conjugated polymer onto the surface of silica-coated rod-shape plasmonic nanoparticle. According to the spectroscopic and microscopic characterizations, the fluorescence intensity of conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo(2,1′,3)-thiadiazole)] (PFBT) could be enhanced around 2-fold after assembling onto the silica-decorated metal nanorod surface compared with the fluorescence intensity of regular PFBT polymer dots without the metal core. The in situ nanorod etching experiment further confirmed this result at the single particle level. In addition to the fluorescence enhancement effect, improved fluorescence stability was obtained from the single particle fluorescence intensity characterizations. As a consequence, this self-assembled functional nanoparticle could be extensively applied to biological imaging such as cellular labeling and single particle tracking owing to the novel and unique optical features, for example, the superior optical stability and specific identification capability from the scattering and fluorescence domain, respectively. Furthermore, the amendable peripheral polymer surface of this nanostructure will promote its applications in biological sensing and imaging-guided functional molecule delivery in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700