用户名: 密码: 验证码:
Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors
详细信息    查看全文
文摘
This study demonstrates a new strategy to develop in vivo electrochemical biosensors through rational design and simple formation of bioelectrochemically multifunctional film (BMF). The BMF is rationally designed by first efficiently incorporating oxidase, ferrocene mediator, and graphene oxide into polymaleimidostyrene/polystyrene (PMS/PS) matrix to form a homogeneous mixture and then simply formed by drop-coating the mixture onto solid conducting substrate. By using the as-formed BMF, electrochemical biosensors could be constructed with a technical simplicity and high reproducibility. To illustrate the BMF-based biosensors for in vivo applications, we directly couple the biosensors to in vivo microdialysis to establish an online electrochemical system (OECS) for in vivo monitoring of glucose in rat auditory cortex during salicylate-induced tinnitus model. The OECS with the BMF-based biosensor as the detector shows a linear response toward glucose within a concentration range from 50 to 500 μM with a detection limit of 10 μM (S/N = 3). Additionally, the OECS is stable and does not suffer from the interference from the electroactive species endogenously coexisting in the brain microdialysate. With the BMF-based OECS, the basal level of glucose in the microdialysate continuously sampled from rat auditory cortex is determined to be 120 ± 10 μM (n = 5). After the rats were administrated with salicylate to induce transient tinnitus, the microdialysate glucose concentration in the rat auditory cortex remarkably increased to 433 ± 190 μM (n = 5) at the time point of 1.5 h. This study essentially offers a new, technically simple and reproducible approach to development of in vivo electrochemical biosensors, which is envisaged to be relatively useful for understanding of the molecular basis of brain functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700