用户名: 密码: 验证码:
Schiff Base Substituent-Triggered Efficient Deboration Reaction and Its Application in Highly Sensitive Hydrogen Peroxide Vapor Detection
详细信息    查看全文
文摘
The organic thin-film fluorescence probe, with the advantages of not polluting the analyte and fast response, has attracted much attention in explosive detection. Different with nitro explosives, the peroxide-based explosives are hardly to be detected because of their poor ultraviolet absorption and lack of an aromatic ring. As the signature compound of peroxide-based explosives, H2O2 vapor detection became more and more important. Boron ester or acid is considered to be a suitable functional group for the detection of hydrogen peroxide due to its reliable reactive activity. Its only drawback lies on its slow degradation velocity. In this work, we try to introduce some functional group to make the boron ester to be easily oxidized by H2O2. Herein, 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)benzaldehyde (OTB) was synthesized and its imine derivatives, OTBXAs, were easily obtained just by putting OTB films in different primary amines vapors. OTBXAs show fast deboronation velocity in H2O2 vapor compared with OTB. The complete reaction time of (E)-N-phenyl-4-((propylimino)methyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (OTBPA) was even shortened 40 times with a response time of seconds. The detection limit for H2O2 vapor was as low as 4.1 parts per trillion (ppt). Further study showed that it is a general approach to enhance the sensing performance of borate to hydrogen peroxide (H2O2) vapor by introducing an imine into an aromatic borate molecule via a solid/vapor reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700