用户名: 密码: 验证码:
Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper
详细信息    查看全文
文摘
The ability to directly synthesize high-quality graphene patterns over large areas is important for many applications such as electronic and optoelectronic devices and circuits. Here, we report a facile and scalable approach to coalesce and recrystallize electrochemically exfoliated graphene flakes into a continuous film by thermal annealing on copper foils. The underlying growth mechanism involves defect-mediated decomposition of electrochemically exfoliated graphene flakes into active polycyclic carbon species, followed by coalescence of the active carbon species into a continuous, monolayer film of high material quality. First-principles calculations confirm that the enhanced affinity of the polycyclic carbon species with copper effectively prevents their surface desorption at elevated temperatures, which is distinct from graphene growth based on the decomposition of solid carbon sources into gaseous hydrocarbons. Significantly, the localized supply of active carbon species in our approach enables spatially confined growth of graphene. Combined with stencil printing of the exfoliated flakes, transparent and conductive graphene circuits have been directly synthesized over large areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700