用户名: 密码: 验证码:
Millisecond Pulsed Films Unify the Mechanisms of Cellulose Fragmentation
详细信息    查看全文
文摘
The mechanism of crystalline cellulose fragmentation has been debated between classical models proposing end-chain or intrachain scission to form short-chain (molten) anhydro-oligomer mixtures and volatile organic compounds. Models developed over the last few decades suggest global kinetics consistent with either mechanism, but validation of the chain-scission mechanism via measured reaction rates of cellulose has remained elusive. To resolve these differences, we introduce a new thermal-pulsing reactor four orders of magnitude faster than conventional thermogravimetic analysis (106 vs 102 °C/min) to measure the millisecond-resolved evolution of cellulose and its volatile products at 400–550 °C. By comparison of cellulose conversion and furan product formation kinetics, both mechanisms are shown to occur with the transition from chain-end scission to intrachain scission above 467 °C concurrent with liquid formation comprised of short-chain cellulose fragments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700