用户名: 密码: 验证码:
Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis
详细信息    查看全文
文摘
While a recent toxicological study has shown that organophosphorus flame retardants (OPFRs) may disrupt sphingolipid homeostasis, epidemiologic evidence is currently lacking. In this study, a total of 257 participants were recruited from Shenzhen, China. Eleven OPFRs were for the first time simultaneously determined in the human blood samples by ultraperformance liquid chromatography and tandem mass spectrometry. Six OPFRs, tributyl phosphate (TNBP), 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-chloroisopropyl) phosphate (TCIPP), tris(2-butoxyethyl) phosphate (TBOEP), triethyl phosphate (TEP), and TPHP, were detectable in at least 90% of participants, with median concentrations of 37.8, 1.22, 0.71, 0.54, 0.49, and 0.43 ng/mL, respectively. Sphingomyelin (SM) levels in the highest quartile of EHDPP, TPHP, TNBP, TBOEP, TEP, and TCIPP were 45.3% [95% confidence interval; 38.1%, 53.0%], 51.9% (45.5%, 58.6%), 153.6% (145.1%, 162.3%), 20.6% (14.5%, 27.0%), 59.0% (52.1%, 66.2%), and 62.8% (55.2%, 70.6%) higher than those in the lowest quartile, respectively, after adjusting for covariates. Sphingosine 1-phosphate (S1P) levels in the highest quartile of EHDPP, TPHP, and TNBP were 36% (−39%, −33%), 16% (−19%, −14%), and 36% (−38%, −33%) lower than those in the lowest quartile, respectively. A similar pattern emerged when exposures were modeled continuously. We for the first time found the associations between OPFRs and changes in human sphingolipid homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700