用户名: 密码: 验证码:
Distinctive Metabolism of Flavonoid between Cultivated and Semiwild Soybean Unveiled through Metabolomics Approach
详细信息    查看全文
文摘
Soybeans are an important crop for agriculture and food, resulting in an increase in the range of its application. Recently, soybean leaves have been used not only for food products but also in the beauty industry. To provide useful and global metabolite information on the development of soy-based products, we investigated the metabolic evolution and cultivar-dependent metabolite variation in the leaves of cultivated (Glycine max) and semiwild (G. gracilis) soybean, through a 1H NMR-based metabolomics approach, as they grew from V (vegetative) 1 to R (reproductive) 7 growth stages. The levels of primary metabolites, such as sucrose, amino acids, organic acids, and fatty acids, were decreased both in the G. gracilis and G. max leaves. However, the secondary metabolites, such as pinitol, rutin, and polyphenols, were increased while synthesis of glucose was elevated as the leaves grew. When metabolite variations between G. gracilis and G. max are compared, it was noteworthy that rutin and its precursor, quercetin-3-O-glucoside, were found only in G. gracilis but not in G. max. Furthermore, levels of pinitol, proline, β-alanine, and acetic acid, a metabolite related to adaptation toward environmental stress, were different between the two soybean cultivars. These results highlight their distinct metabolism for adaptation to environmental conditions and their intrinsic metabolic phenotype. This study therefore provides important information on the cultivar-dependent metabolites of soybean leaves for better understanding of plant physiology toward the development of soy-based products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700