用户名: 密码: 验证码:
Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting
详细信息    查看全文
文摘
The construction of a multivalent ligand is an effective way to increase affinity and selectivity toward biomolecular targets with multiple-ligand binding sites. Adopting this strategy, we used a known cell-penetrating peptide (CPP) mimic as a scaffold to develop a series of multivalent ligand constructs that bind to the expanded dCTG (CTGexp) and rCUG nucleotide repeats (CUGexp) known to cause myotonic dystrophy type I (DM1), an incurable neuromuscular disease. By assembling this polyvalent construct, the hydrophobic ligands are solubilized and delivered into cell nuclei, and their enhanced binding affinity leads to the inhibition of ribonuclear foci formation and a reversal of splicing defects, all at low concentrations. Some of the multivalent ligands are shown to inhibit selectively the in vitro transcription of (CTG·CAG)74, to reduce the concentration of the toxic CUG RNA in DM1 model cells, and to show phenotypic improvement in vivo in a Drosophila model of DM1. This strategy may be useful in drug design for other trinucleotide repeat disorders and more broadly for intracellular multivalent targeting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700