用户名: 密码: 验证码:
Self-Assembly of Concentric Hexagons and Hierarchical Self-Assembly of Supramolecular Metal–Organic Nanoribbons at the Solid/Liquid Interface
详细信息    查看全文
文摘
In an effort to exert more precise control over structural features of supramolecules, a series of giant concentric hexagons were assembled as discrete structures using tetratopic terpyridine (tpy) ligands. In preparation of tetratopic ligand, pyrylium and pyridinium salts chemistry significantly facilitated synthesis. The key compounds were obtained by condensation reactions of pyrylium salts with corresponding primary amine derivatives in good yields. These discrete metallo-supramolecular concentric hexagons were fully characterized by NMR, ESI–MS, TWIM–MS, and TEM, establishing their hexagon-in-hexagon architectures. The combination of different tetratopic ligands also assembled hybrid concentric hexagons with increasing diversity and complexity. Furthermore, these concentric hexagon supramolecules with precisely controlled shapes and sizes were utilized as building blocks to hierarchically self-assemble supramolecular metal–organic nanoribbons (SMON) at solid–liquid interfaces. Ambient STM imaging showed the formation of long 1D SMON rather than 2D assembly on the basal plane of highly oriented pyrolytic graphite (HOPG) surface after simple dropcasting of the solution of preassembled concentric hexagons onto a freshly cleaved surface of HOPG. This wet chemical method based on self-assembly may offer simple, economical, and scalable routes to deliver complex materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700