用户名: 密码: 验证码:
Multicomponent Combinatorial Polymerization via the Biginelli Reaction
详细信息    查看全文
文摘
A multicomponent combinatorial polymerization method has been exploited as a new intersection between combinatorial chemistry, polymer chemistry, and organic chemistry. The tricomponent Biginelli reaction has been employed as a model multicomponent reaction (MCR) to efficiently prepare a library of polycondensates with continuously changed chain structure but different physical properties. The naturally increased reaction modules (monomers) directly doubled the number of polymers in the library, effectively improving the efficiency of polymer preparation. The glass transition temperatures (Tg) of those homologous polymers have been mapped for the first time to predict the Tg values of absent polymer homologues with good to excellent accuracy. Meanwhile, the Tg maps have also been used to reveal the regular change in Tg according to the polymer structure (linking group, monomer chain length, etc.), initially suggesting the academic significance of the multicomponent combinatorial polymerization system. We believe that the current research paves a straightforward way to synthesize new libraries of polymers via MCRs and might prompt the broader study of MCRs in interdisciplinary fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700